Local Whittle estimation in time‐varying long memory series
Josu Arteche and
Luis F. Martins
Journal of Time Series Analysis, 2025, vol. 46, issue 4, 647-673
Abstract:
The memory parameter is usually assumed to be constant in traditional long memory time series. We relax this restriction by considering the memory a time‐varying function that depends on a finite number of parameters. A time‐varying Local Whittle estimator of these parameters, and hence of the memory function, is proposed. Its consistency and asymptotic normality are shown for locally stationary and locally non‐stationary long memory processes, where the spectral behaviour is restricted only at frequencies close to the origin. Its good finite sample performance is shown in a Monte Carlo exercise and in two empirical applications, highlighting its benefits over the fully parametric Whittle estimator proposed by Palma and Olea (2010). Standard inference techniques for the constancy of the memory are also proposed based on this estimator.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jtsa.12782
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:46:y:2025:i:4:p:647-673
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().