HEDGING WITH ENERGY
Francesco Corielli ()
Mathematical Finance, 2006, vol. 16, issue 3, 495-517
Abstract:
In the setting of diffusion models for price evolution, we suggest an easily implementable approximate evaluation formula for measuring the errors in option pricing and hedging due to volatility misspecification. The main tool we use in this paper is a (suitably modified) classical inequality for the L2 norm of the solution, and the derivatives of the solution, of a partial differential equation (the so‐called “energy” inequality). This result allows us to give bounds on the errors implied by the use of approximate models for option valuation and hedging and can be used to justify formally some “folk” belief about the robustness of the Black and Scholes model. Surprisingly enough, the result can also be applied to improve pricing and hedging with an approximate model. When statistical or a priori information is available on the “true” volatility, the error measure given by the energy inequality can be minimized w.r.t. the parameters of the approximating model. The method suggested in this paper can help in conjugating statistical estimation of the volatility function derived from flexible but computationally cumbersome statistical models, with the use of analytically tractable approximate models calibrated using error estimates.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9965.2006.00280.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:16:y:2006:i:3:p:495-517
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().