Analytical approximations of local†Heston volatility model and error analysis
R. Bompis and
E. Gobet
Mathematical Finance, 2018, vol. 28, issue 3, 920-961
Abstract:
This paper studies the expansion of an option price (with bounded Lipschitz payoff) in a stochastic volatility model including a local volatility component. The stochastic volatility is a square root process, which is widely used for modeling the behavior of the variance process (Heston model). The local volatility part is of general form, requiring only appropriate growth and boundedness assumptions. We rigorously establish tight error estimates of our expansions, using Malliavin calculus. The error analysis, which requires a careful treatment because of the lack of weak differentiability of the model, is interesting on its own. Moreover, in the particular case of call–put options, we also provide expansions of the Black–Scholes implied volatility that allow to obtain very simple formulas that are fast to compute compared to the Monte Carlo approach and maintain a very competitive accuracy.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/mafi.12154
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:28:y:2018:i:3:p:920-961
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().