EconPapers    
Economics at your fingertips  
 

Joint calibration to SPX and VIX options with signature‐based models

Christa Cuchiero, Guido Gazzani, Janka Möller and Sara Svaluto‐Ferro

Mathematical Finance, 2025, vol. 35, issue 1, 161-213

Abstract: We consider a stochastic volatility model where the dynamics of the volatility are described by a linear function of the (time extended) signature of a primary process which is supposed to be a polynomial diffusion. We obtain closed form expressions for the VIX squared, exploiting the fact that the truncated signature of a polynomial diffusion is again a polynomial diffusion. Adding to such a primary process the Brownian motion driving the stock price, allows then to express both the log‐price and the VIX squared as linear functions of the signature of the corresponding augmented process. This feature can then be efficiently used for pricing and calibration purposes. Indeed, as the signature samples can be easily precomputed, the calibration task can be split into an offline sampling and a standard optimization. We also propose a Fourier pricing approach for both VIX and SPX options exploiting that the signature of the augmented primary process is an infinite dimensional affine process. For both the SPX and VIX options we obtain highly accurate calibration results, showing that this model class allows to solve the joint calibration problem without adding jumps or rough volatility.

Date: 2025
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/mafi.12442

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:35:y:2025:i:1:p:161-213

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627

Access Statistics for this article

Mathematical Finance is currently edited by Jerome Detemple

More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathfi:v:35:y:2025:i:1:p:161-213