Neural optimal stopping boundary
Andres Max Reppen,
Halil Mete Soner and
Valentin Tissot‐Daguette
Mathematical Finance, 2025, vol. 35, issue 2, 441-469
Abstract:
A method based on deep artificial neural networks and empirical risk minimization is developed to calculate the boundary separating the stopping and continuation regions in optimal stopping. The algorithm parameterizes the stopping boundary as the graph of a function and introduces relaxed stopping rules based on fuzzy boundaries to facilitate efficient optimization. Several financial instruments, some in high dimensions, are analyzed through this method, demonstrating its effectiveness. The existence of the stopping boundary is also proved under natural structural assumptions.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/mafi.12450
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:35:y:2025:i:2:p:441-469
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().