EconPapers    
Economics at your fingertips  
 

Rough PDEs for Local Stochastic Volatility Models

Peter Bank, Christian Bayer, Peter K. Friz and Luca Pelizzari

Mathematical Finance, 2025, vol. 35, issue 3, 661-681

Abstract: In this work, we introduce a novel pricing methodology in general, possibly non‐Markovian local stochastic volatility (LSV) models. We observe that by conditioning the LSV dynamics on the Brownian motion that drives the volatility, one obtains a time‐inhomogeneous Markov process. Using tools from rough path theory, we describe how to precisely understand the conditional LSV dynamics and reveal their Markovian nature. The latter allows us to connect the conditional dynamics to so‐called rough partial differential equations (RPDEs), through a Feynman–Kac type of formula. In terms of European pricing, conditional on realizations of one Brownian motion, we can compute conditional option prices by solving the corresponding linear RPDEs, and then average over all samples to find unconditional prices. Our approach depends only minimally on the specification of the volatility, making it applicable for a wide range of classical and rough LSV models, and it establishes a PDE pricing method for non‐Markovian models. Finally, we present a first glimpse at numerical methods for RPDEs and apply them to price European options in several rough LSV models.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/mafi.12458

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:35:y:2025:i:3:p:661-681

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627

Access Statistics for this article

Mathematical Finance is currently edited by Jerome Detemple

More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-07-03
Handle: RePEc:bla:mathfi:v:35:y:2025:i:3:p:661-681