Rough PDEs for Local Stochastic Volatility Models
Peter Bank,
Christian Bayer,
Peter K. Friz and
Luca Pelizzari
Mathematical Finance, 2025, vol. 35, issue 3, 661-681
Abstract:
In this work, we introduce a novel pricing methodology in general, possibly non‐Markovian local stochastic volatility (LSV) models. We observe that by conditioning the LSV dynamics on the Brownian motion that drives the volatility, one obtains a time‐inhomogeneous Markov process. Using tools from rough path theory, we describe how to precisely understand the conditional LSV dynamics and reveal their Markovian nature. The latter allows us to connect the conditional dynamics to so‐called rough partial differential equations (RPDEs), through a Feynman–Kac type of formula. In terms of European pricing, conditional on realizations of one Brownian motion, we can compute conditional option prices by solving the corresponding linear RPDEs, and then average over all samples to find unconditional prices. Our approach depends only minimally on the specification of the volatility, making it applicable for a wide range of classical and rough LSV models, and it establishes a PDE pricing method for non‐Markovian models. Finally, we present a first glimpse at numerical methods for RPDEs and apply them to price European options in several rough LSV models.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/mafi.12458
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:35:y:2025:i:3:p:661-681
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().