A Discrete Time Equivalent Martingale Measure
Robert J. Elliott and
Dilip B. Madan
Mathematical Finance, 1998, vol. 8, issue 2, 127-152
Abstract:
An equivalent martingale measure selection strategy for discrete time, continuous state, asset price evolution models is proposed. The minimal martingale law is shown to generally fail to produce a probability law in this context. The proposed strategy, termed the extended Girsanov principle, performs a multiplicative decomposition of asset price movements into a predictable and martingale component with the measure change identifying the discounted asset price process to the martingale component. However, unlike the minimal martingale law, the resulting martingale law of the extended Girsanov principle leads to weak form efficient price processes. It is shown that the proposed measure change is relevant for economies in which investors adopt hedging strategies that minimize the variance of a risk adjusted discounted cost of hedging that uses risk adjusted asset prices in calculating hedging returns. Risk adjusted prices deflate asset prices by the asset's excess return. The explicit form of the change of measure density leads to tractable econometric strategies for testing the validity of the extended Girsanov principle. A number of interesting applications of the extended Girsanov principle are also developed.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (41)
Downloads: (external link)
https://doi.org/10.1111/1467-9965.00048
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathfi:v:8:y:1998:i:2:p:127-152
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0960-1627
Access Statistics for this article
Mathematical Finance is currently edited by Jerome Detemple
More articles in Mathematical Finance from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().