Schur–Weyl Theory for C*‐algebras
Daniel Beltiţă and
Karl‐Hermann Neeb
Mathematische Nachrichten, 2012, vol. 285, issue 10, 1170-1198
Abstract:
To each irreducible infinite dimensional representation \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$(\pi ,\mathcal {H})$\end{document} of a C*‐algebra \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {A}$\end{document}, we associate a collection of irreducible norm‐continuous unitary representations \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\pi _{\lambda }^\mathcal {A}$\end{document} of its unitary group \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\rm U}(\mathcal {A})$\end{document}, whose equivalence classes are parameterized by highest weights in the same way as the irreducible bounded unitary representations of the group \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\rm U}_\infty (\mathcal {H}) = {\rm U}(\mathcal {H}) \cap (\mathbf {1} + K(\mathcal {H}))$\end{document} are. These are precisely the representations arising in the decomposition of the tensor products \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {H}^{\otimes n} \otimes (\mathcal {H}^*)^{\otimes m}$\end{document} under \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\rm U}(\mathcal {A})$\end{document}. We show that these representations can be realized by sections of holomorphic line bundles over homogeneous Kähler manifolds on which \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\rm U}(\mathcal {A})$\end{document} acts transitively and that the corresponding norm‐closed momentum sets \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$I_{\pi _\lambda ^\mathcal {A}}^{\bf n} \subseteq {\mathfrak u}(\mathcal {A})^{\prime }$\end{document} distinguish inequivalent representations of this type.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201100114
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:285:y:2012:i:10:p:1170-1198
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().