EconPapers    
Economics at your fingertips  
 

Singularities of slice regular functions

Caterina Stoppato

Mathematische Nachrichten, 2012, vol. 285, issue 10, 1274-1293

Abstract: Beginning in 2006, G. Gentili and D. C. Struppa developed a theory of regular quaternionic functions with properties that recall classical results in complex analysis. For instance, in each Euclidean ball B(0, R) centered at 0 the set of regular functions coincides with that of quaternionic power series $\sum _{n \in {\mathbb {N}}} q^n a_n$\end{document} converging in B(0, R). In 2009 the author proposed a classification of singularities of regular functions as removable, essential or as poles and studied poles by constructing the ring of quotients. In that article, not only the statements, but also the proving techniques were confined to the special case of balls B(0, R). Quite recently, F. Colombo, G. Gentili and I. Sabadini (2010) and the same authors in collaboration with D. C. Struppa (2009) identified a larger class of domains, on which the theory of regular functions is natural and not limited to quaternionic power series. The present article studies singularities in this new context, beginning with the construction of the ring of quotients and of Laurent‐type expansions at points p other than the origin. These expansions, which differ significantly from their complex analogs, allow a classification of singularities that is consistent with the one given in 2009. Poles are studied, as well as essential singularities, for which a version of the Casorati‐Weierstrass Theorem is proven.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201100082

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:285:y:2012:i:10:p:1274-1293

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:285:y:2012:i:10:p:1274-1293