EconPapers    
Economics at your fingertips  
 

Maps of Mori Dream Spaces in Cox coordinates Part I: existence of descriptions

J. Buczyński and O. Kędzierski

Mathematische Nachrichten, 2018, vol. 291, issue 4, 576-592

Abstract: Any rational map between affine spaces, projective spaces or toric varieties can be described in terms of their affine, homogeneous, or Cox coordinates. We show an analogous statement in the setting of Mori Dream Spaces. More precisely (in the case of regular maps) we show that there exists a finite extension of the Cox ring of the source, such that the regular map lifts to a morphism from the Cox ring of the target to the finite extension. Moreover the extension only involves roots of homogeneous elements. Such a description of the map can be applied in practical computations.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201600287

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:291:y:2018:i:4:p:576-592

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:291:y:2018:i:4:p:576-592