Maps of Mori Dream Spaces in Cox coordinates Part I: existence of descriptions
J. Buczyński and
O. Kędzierski
Mathematische Nachrichten, 2018, vol. 291, issue 4, 576-592
Abstract:
Any rational map between affine spaces, projective spaces or toric varieties can be described in terms of their affine, homogeneous, or Cox coordinates. We show an analogous statement in the setting of Mori Dream Spaces. More precisely (in the case of regular maps) we show that there exists a finite extension of the Cox ring of the source, such that the regular map lifts to a morphism from the Cox ring of the target to the finite extension. Moreover the extension only involves roots of homogeneous elements. Such a description of the map can be applied in practical computations.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201600287
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:291:y:2018:i:4:p:576-592
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().