EconPapers    
Economics at your fingertips  
 

Twisted Hodge filtration: Curvature of the determinant

Philipp Naumann

Mathematische Nachrichten, 2019, vol. 292, issue 11, 2452-2455

Abstract: Given a holomorphic family f:X→S of compact complex manifolds and a relatively ample line bundle L→X, the higher direct images Rn−pf∗ΩX/Sp(L) carry a natural hermitian metric. An explicit formula for the curvature tensor of these direct images is given in [8]. We prove that the determinant of the twisted Hodge filtration FLp=⨁i≥pRn−if∗ΩX/Si(L) is (semi‐)positive on the base S if L itself is (semi‐)positive on X.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201800418

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:11:p:2452-2455

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:292:y:2019:i:11:p:2452-2455