Expected intrinsic volumes and facet numbers of random beta‐polytopes
Zakhar Kabluchko,
Daniel Temesvari and
Christoph Thäle
Mathematische Nachrichten, 2019, vol. 292, issue 1, 79-105
Abstract:
Let X1,⋯,Xn be i.i.d. random points in the d‐dimensional Euclidean space sampled according to one of the following probability densities: fd,β(x)=const·1−∥x∥2β,∥x∥
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201700255
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:1:p:79-105
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().