On weighted inductive limits of spaces of ultradifferentiable functions and their duals
Andreas Debrouwere and
Jasson Vindas
Mathematische Nachrichten, 2019, vol. 292, issue 3, 573-602
Abstract:
In the first part of this paper we discuss the completeness of two general classes of weighted inductive limits of spaces of ultradifferentiable functions. In the second part we study their duals and characterize these spaces in terms of the growth of convolution averages of their elements. This characterization gives a canonical way to define a locally convex topology on these spaces and we give necessary and sufficient conditions for them to be ultrabornological. In particular, our results apply to spaces of convolutors for Gelfand–Shilov spaces.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201700395
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:292:y:2019:i:3:p:573-602
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().