On a generalization of the Neumann problem for the Laplace equation
B. Turmetov and
K. Nazarova
Mathematische Nachrichten, 2020, vol. 293, issue 1, 169-177
Abstract:
We investigate solvability of a fractional analogue of the Neumann problem for the Laplace equation. As a boundary operator we consider operators of fractional differentiation in the Hadamard sense. The problem is solved by reduction to an integral Fredholm equation. A theorem on existence and uniqueness of the problem solution is proved.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201800219
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:293:y:2020:i:1:p:169-177
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().