Solutions for a quasilinear elliptic p⃗(x)${\vec{p}(x)}$‐Kirchhoff type problem with weight and nonlinear Robin boundary conditions
Brahim Ellahyani and
Abderrahmane El Hachimi
Mathematische Nachrichten, 2022, vol. 295, issue 2, 323-344
Abstract:
This paper deals with the existence and multiplicity of weak solutions to a class of quasilinear elliptic p⃗(x)$\vec{p}(x)$‐Kirchhoff type problems with weight and a nonlinear Robin boundary condition such as a+bK∑i=1N∫Ω1pi(x)∂u∂xipi(x)dx(−Δp⃗(x)u)+∑i=1NVi(x)upi(x)−2u=θ(x)um(x)−2u+f(x,u)inΩ,∑i=1N∂u∂xipi(x)−2∂u∂xiυi=η|u|q(x)−2uon∂Ω,\begin{equation*}\hskip7pc {\begin{cases} \displaystyle {\left(a+b K{\left(\sum _{i=1}^{N}\int \nolimits _ {\Omega } \frac{1}{p_{i}(x)} {\left|\frac{\partial u}{\partial x_{i}}\right|}^{p_{i}(x)} \mathrm{d}x\right)} \right)} \big (-\Delta _{\vec{p}(x)} u\big )+\sum _{i=1}^{N}V_{i}(x){\left|u\right|}^{p_{i}(x)-2}u\\[12pt] \quad =\theta (x){\left|u\right|}^{m(x)-2}u+f(x,u) \text{ in } \Omega , \\[2pt] \displaystyle \sum _{i=1}^{N}{\left| \frac{\partial u}{\partial x_{i}}\right|}^{p_{i}(x)-2} \frac{\partial u}{\partial x_{i}}\upsilon _{i} =\eta | u|^{q(x)-2}u \quad \text{on } \partial \Omega , \end{cases}}\hskip-7pc \end{equation*}where Ω is a smooth bounded domain. Under suitable conditions on the data, we show the existence and multiplicity of weak solutions by means of a variational approach in the framework of anisotropic Sobolev spaces with variable exponents.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201900370
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:2:p:323-344
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().