EconPapers    
Economics at your fingertips  
 

The section conjecture over large algebraic extensions of finitely generated fields

Moshe Jarden and Sebastian Petersen

Mathematische Nachrichten, 2022, vol. 295, issue 5, 890-911

Abstract: Let K be a finitely generated extension of its prime field and let e≥2$e\ge 2$ be an integer. We prove the injectivity part of the section conjecture of Grothendieck for almost all σ:=(σ1,…,σe)∈Gal(K)e${\bf \sigma }:=\big (\sigma _1,\ldots ,\sigma _e\big )\in {\rm Gal}(K)^e$ and for all smooth geometrically integral projective curves of genus ≥1 over the field K∼(σ)$\widetilde{K}({\bf \sigma })$.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201900538

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:5:p:890-911

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:5:p:890-911