The section conjecture over large algebraic extensions of finitely generated fields
Moshe Jarden and
Sebastian Petersen
Mathematische Nachrichten, 2022, vol. 295, issue 5, 890-911
Abstract:
Let K be a finitely generated extension of its prime field and let e≥2$e\ge 2$ be an integer. We prove the injectivity part of the section conjecture of Grothendieck for almost all σ:=(σ1,…,σe)∈Gal(K)e${\bf \sigma }:=\big (\sigma _1,\ldots ,\sigma _e\big )\in {\rm Gal}(K)^e$ and for all smooth geometrically integral projective curves of genus ≥1 over the field K∼(σ)$\widetilde{K}({\bf \sigma })$.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201900538
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:5:p:890-911
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().