Sharp estimates for conditionally centered moments and for compact operators on Lp$L^p$ spaces
Eugene Shargorodsky and
Teo Sharia
Mathematische Nachrichten, 2023, vol. 296, issue 1, 368-381
Abstract:
Let (Ω,F,P)$(\Omega , \mathcal {F}, \mathbf {P})$ be a probability space, ξ be a random variable on (Ω,F,P)$(\Omega , \mathcal {F}, \mathbf {P})$, G$\mathcal {G}$ be a sub‐σ‐algebra of F$\mathcal {F}$, and let EG=E(·|G)$\mathbf {E}^\mathcal {G} = \mathbf { E}(\cdot | \mathcal {G})$ be the corresponding conditional expectation operator. We obtain sharp estimates for the moments of ξ−EGξ$\xi - \mathbf {E}^\mathcal {G}\xi$ in terms of the moments of ξ. This allows us to find the optimal constant in the bounded compact approximation property of Lp([0,1])$L^p([0, 1])$, 1
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100217
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:1:p:368-381
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().