EconPapers    
Economics at your fingertips  
 

Sharp estimates for conditionally centered moments and for compact operators on Lp$L^p$ spaces

Eugene Shargorodsky and Teo Sharia

Mathematische Nachrichten, 2023, vol. 296, issue 1, 368-381

Abstract: Let (Ω,F,P)$(\Omega , \mathcal {F}, \mathbf {P})$ be a probability space, ξ be a random variable on (Ω,F,P)$(\Omega , \mathcal {F}, \mathbf {P})$, G$\mathcal {G}$ be a sub‐σ‐algebra of F$\mathcal {F}$, and let EG=E(·|G)$\mathbf {E}^\mathcal {G} = \mathbf { E}(\cdot | \mathcal {G})$ be the corresponding conditional expectation operator. We obtain sharp estimates for the moments of ξ−EGξ$\xi - \mathbf {E}^\mathcal {G}\xi$ in terms of the moments of ξ. This allows us to find the optimal constant in the bounded compact approximation property of Lp([0,1])$L^p([0, 1])$, 1

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100217

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:1:p:368-381

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:1:p:368-381