Global well‐posedness and finite time blow‐up for a class of wave equation involving fractional p‐Laplacian with logarithmic nonlinearity
Tahir Boudjeriou
Mathematische Nachrichten, 2023, vol. 296, issue 3, 938-956
Abstract:
In this paper, we consider the following class of wave equation involving fractional p‐Laplacian with logarithmic nonlinearity utt+(−Δ)psu=|u|q−2ulog(|u|)inΩ,t>0,u=0inRN∖Ω,t>0,u(x,0)=u0(x),ut(x,0)=v0(x)inΩ,$$\begin{equation*} \hspace*{4pc}{\left\lbrace \def\eqcellsep{&}\begin{array}{llc}u_{tt}+(-\Delta )^{s}_{p}u=|u|^{q-2}u\log (|u|) & \text{in}\ & \Omega ,\;t>0 , \\[3pt] u =0 & \text{in} & \mathbb {R}^{N}\backslash \Omega ,\;t > 0, \\[3pt] u(x,0)=u_{0}(x),\,\,\,\,u_{t}(x,0)=v_{0}(x)& \text{in} &\Omega , \end{array} \right.} \end{equation*}$$where Ω⊂RN(N≥1)$\Omega \subset \mathbb {R}^N \, (N\ge 1)$ is a bounded domain with Lipschitz boundary, s∈(0,1)$s\in (0,1)$, 2≤p
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000266
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:3:p:938-956
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().