EconPapers    
Economics at your fingertips  
 

The two‐dimensional stationary Navier–Stokes equations in toroidal Besov spaces

Hiroyuki Tsurumi

Mathematische Nachrichten, 2023, vol. 296, issue 4, 1651-1668

Abstract: We consider the stationary Navier–Stokes equations in the two‐dimensional torus T2$\mathbb {T}^2$. For any ε>0$\varepsilon >0$, we show the existence, uniqueness, and continuous dependence of solutions in homogeneous toroidal Besov spaces Ḃp+ε,q−1+2p(T2)$\dot{B}^{-1+\frac{2}{p}}_{p+\varepsilon , q}(\mathbb {T}^2)$ for given small external forces in Ḃp+ε,q−3+2p(T2)$\dot{B}^{-3+\frac{2}{p}}_{p+\varepsilon , q}(\mathbb {T}^2)$ when 1≤p

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000208

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:4:p:1651-1668

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:4:p:1651-1668