EconPapers    
Economics at your fingertips  
 

Heat kernel gradient estimates for the Vicsek set

Fabrice Baudoin and Li Chen

Mathematische Nachrichten, 2024, vol. 297, issue 12, 4450-4477

Abstract: We prove pointwise and Lp$L^p$ gradient estimates for the heat kernel on the bounded and unbounded Vicsek set and applications to Sobolev inequalities are given. We also define a Hodge semigroup in that setting and prove estimates for its kernel.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202400180

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:297:y:2024:i:12:p:4450-4477

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:297:y:2024:i:12:p:4450-4477