EconPapers    
Economics at your fingertips  
 

On the Lindelöf hypothesis for the Riemann zeta function and Piltz divisor problem

Lahoucine Elaissaoui

Mathematische Nachrichten, 2025, vol. 298, issue 12, 3960-3973

Abstract: In order to well understand the behavior of the Riemann zeta function inside the critical strip, we show, among other things, the Fourier expansion of the ζk(s)$\zeta ^k(s)$ (k∈N$k \in \mathbb {N}$) in the half‐plane ℜs>1/2$\Re s > 1/2$ and we deduce a necessary and sufficient condition for the truth of the Lindelöf hypothesis. Moreover, if Δk$\Delta _k$ denotes the error term in the Piltz divisor problem then for almost all x≥1$x\ge 1$ and any given k∈N$k \in \mathbb {N}$ we have Δk(x)=limρ→1−∑n=0+∞(−1)nℓn,kLnlog(x)ρn$$\begin{equation*} \hspace*{86pt}\Delta _k(x) = \lim _{\rho \rightarrow 1^-}\sum _{n=0}^{+\infty }(-1)^n\ell _{n,k}L_n{\left(\log (x)\right)}\rho ^n \end{equation*}$$where (ℓn,k)n$(\ell _{n,k})_{n}$ and Ln$L_n$ denote, respectively, the Fourier coefficients of ζk(s)$\zeta ^k(s)$ and Laguerre polynomials.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.70081

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:12:p:3960-3973

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-12-13
Handle: RePEc:bla:mathna:v:298:y:2025:i:12:p:3960-3973