EconPapers    
Economics at your fingertips  
 

Nontriviality of rings of integral‐valued polynomials

Giulio Peruginelli and Nicholas J. Werner

Mathematische Nachrichten, 2025, vol. 298, issue 12, 3974-3994

Abstract: Let S$S$ be a subset of Z¯$\overline{\mathbb {Z}}$, the ring of all algebraic integers. A polynomial f∈Q[X]$f \in \mathbb {Q}[X]$ is said to be integral‐valued on S$S$ if f(s)∈Z¯$f(s) \in \overline{\mathbb {Z}}$ for all s∈S$s \in S$. The set IntQ(S,Z¯)${\mathrm{Int}}_{\mathbb{Q}}(S,\bar{\mathbb{Z}})$ of all integral‐valued polynomials on S$S$ forms a subring of Q[X]$\mathbb {Q}[X]$ containing Z[X]$\mathbb {Z}[X]$. We say that IntQ(S,Z¯)${\mathrm{Int}} _{\mathbb {Q}}(S,\overline{\mathbb {Z}})$ is trivial if IntQ(S,Z¯)=Z[X]${\mathrm{Int}} _{\mathbb {Q}}(S,\overline{\mathbb {Z}}) = \mathbb {Z}[X]$, and nontrivial otherwise. We give a collection of necessary and sufficient conditions on S$S$ in order for IntQ(S,Z¯)${\mathrm{Int}} _{\mathbb {Q}}(S,\overline{\mathbb {Z}})$ to be nontrivial. Our characterizations involve, variously, topological conditions on S$S$ with respect to fixed extensions of the p$p$‐adic valuations to Q¯$\overline{\mathbb {Q}}$; pseudo‐monotone sequences contained in S$S$; ramification indices and residue field degrees; and the polynomial closure of S$S$ in Z¯$\overline{\mathbb {Z}}$.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.70057

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:12:p:3974-3994

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-12-13
Handle: RePEc:bla:mathna:v:298:y:2025:i:12:p:3974-3994