Nontriviality of rings of integral‐valued polynomials
Giulio Peruginelli and
Nicholas J. Werner
Mathematische Nachrichten, 2025, vol. 298, issue 12, 3974-3994
Abstract:
Let S$S$ be a subset of Z¯$\overline{\mathbb {Z}}$, the ring of all algebraic integers. A polynomial f∈Q[X]$f \in \mathbb {Q}[X]$ is said to be integral‐valued on S$S$ if f(s)∈Z¯$f(s) \in \overline{\mathbb {Z}}$ for all s∈S$s \in S$. The set IntQ(S,Z¯)${\mathrm{Int}}_{\mathbb{Q}}(S,\bar{\mathbb{Z}})$ of all integral‐valued polynomials on S$S$ forms a subring of Q[X]$\mathbb {Q}[X]$ containing Z[X]$\mathbb {Z}[X]$. We say that IntQ(S,Z¯)${\mathrm{Int}} _{\mathbb {Q}}(S,\overline{\mathbb {Z}})$ is trivial if IntQ(S,Z¯)=Z[X]${\mathrm{Int}} _{\mathbb {Q}}(S,\overline{\mathbb {Z}}) = \mathbb {Z}[X]$, and nontrivial otherwise. We give a collection of necessary and sufficient conditions on S$S$ in order for IntQ(S,Z¯)${\mathrm{Int}} _{\mathbb {Q}}(S,\overline{\mathbb {Z}})$ to be nontrivial. Our characterizations involve, variously, topological conditions on S$S$ with respect to fixed extensions of the p$p$‐adic valuations to Q¯$\overline{\mathbb {Q}}$; pseudo‐monotone sequences contained in S$S$; ramification indices and residue field degrees; and the polynomial closure of S$S$ in Z¯$\overline{\mathbb {Z}}$.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.70057
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:12:p:3974-3994
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().