EconPapers    
Economics at your fingertips  
 

Hodge loci associated with linear subspaces intersecting in codimension one

Remke Kloosterman

Mathematische Nachrichten, 2025, vol. 298, issue 4, 1220-1229

Abstract: Let X⊂P2k+1$X\subset \mathbf {P}^{2k+1}$ be a smooth hypersurface containing two k$k$‐dimensional linear spaces Π1,Π2$\Pi _1,\Pi _2$, such that dimΠ1∩Π2=k−1$\dim \Pi _1\cap \Pi _2=k-1$. In this paper, we study the question whether the Hodge loci NL([Π1]+λ[Π2])$\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$ and NL([Π1],[Π2])$\operatorname{NL}([\Pi _1],[\Pi _2])$ coincide. This turns out to be the case in a neighborhood of X$X$ if X$X$ is very general on NL([Π1],[Π2])$\operatorname{NL}([\Pi _1],[\Pi _2])$, k>1$k>1$, and λ≠0,1$\lambda \ne 0,1$. However, there exists a hypersurface X$X$ for which NL([Π1],[Π2])$\operatorname{NL}([\Pi _1],[\Pi _2])$ is smooth at X$X$, but NL([Π1]+λ[Π2])$\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$ is singular for all λ≠0,1$\lambda \ne 0,1$. We expect that this is due to an embedded component of NL([Π1]+λ[Π2])$\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$. The case k=1$k=1$ was treated before by Dan, in that case NL([Π1]+λ[Π2])$\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$ is nonreduced.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202400066

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:298:y:2025:i:4:p:1220-1229

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-04-10
Handle: RePEc:bla:mathna:v:298:y:2025:i:4:p:1220-1229