A Kernel Variogram Estimator for Clustered Data
Raquel Menezes,
Pilar Garcia‐soidán and
Manuel Febrero‐bande
Scandinavian Journal of Statistics, 2008, vol. 35, issue 1, 18-37
Abstract:
Abstract. The variogram provides an important method for measuring the dependence of attribute values between spatial locations. Suppose that the nature of the sampling process leads to the presence of clustered data; it would be advisable to use a variogram estimator that aims to adjust for clustering of samples. In this setting, the use of a non‐parametric weighted estimator, obtained by considering an inverse weight to a given neighbourhood density combined with the kernel method, seems to have a satisfactory behaviour in practice. This paper pursues a theoretical study of the cluster robust estimator, by proving that it is asymptotically unbiased as well as consistent and by providing criteria for selection of the bandwidth parameter and the neighbourhood radius. Numerical studies are also included to illustrate the performance of the considered estimator and the suggested approaches.
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1467-9469.2007.00566.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:35:y:2008:i:1:p:18-37
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().