Constructing likelihood functions for interval‐valued random variables
X. Zhang,
B. Beranger and
S. A. Sisson
Scandinavian Journal of Statistics, 2020, vol. 47, issue 1, 1-35
Abstract:
There is a growing need for flexible methods to analyze interval‐valued data, which can provide efficient data representations for very large data sets. However, the existing descriptive frameworks to achieve this ignore the process by which interval‐valued data are typically constructed, namely, by the aggregation of real‐valued data generated from some underlying process. In this paper, we develop the foundations of likelihood‐based statistical inference for intervals that directly incorporates the underlying data generating procedure into the analysis. That is, it permits the direct fitting of models for the underlying real‐valued data given only the interval‐valued summaries. This generative approach overcomes several problems associated with existing methods, including the rarely satisfied assumption of within‐interval uniformity. The new methods are illustrated by simulated and real data analyses.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/sjos.12395
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:47:y:2020:i:1:p:1-35
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().