EconPapers    
Economics at your fingertips  
 

A two‐step estimation procedure for semiparametric mixture cure models

Eni Musta, Valentin Patilea and Ingrid Van Keilegom

Scandinavian Journal of Statistics, 2024, vol. 51, issue 3, 987-1011

Abstract: In survival analysis, cure models have been developed to account for the presence of cured subjects that will never experience the event of interest. Mixture cure models with a parametric model for the incidence and a semiparametric model for the survival of the susceptibles are particularly common in practice. Because of the latent cure status, maximum likelihood estimation is performed via the iterative EM algorithm. Here, we focus on the cure probabilities and propose a two‐step procedure to improve upon the maximum likelihood estimator when the sample size is not large. The new method is based on presmoothing by first constructing a nonparametric estimator and then projecting it on the desired parametric class. We investigate the theoretical properties of the resulting estimator and show through an extensive simulation study for the logistic‐Cox model that it outperforms the existing method. Practical use of the method is illustrated through two melanoma datasets.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/sjos.12713

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:51:y:2024:i:3:p:987-1011

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:987-1011