Minimax estimation of functional principal components from noisy discretized functional data
Ryad Belhakem,
Franck Picard,
Vincent Rivoirard and
Angelina Roche
Scandinavian Journal of Statistics, 2025, vol. 52, issue 1, 38-80
Abstract:
Functional Principal Component Analysis is a reference method for dimension reduction of curve data. Its theoretical properties are now well understood in the simplified case where the sample curves are fully observed without noise. However, functional data are noisy and necessarily observed on a finite discretization grid. Common practice consists in smoothing the data and then to compute the functional estimates, but the impact of this denoising step on the procedure's statistical performance are rarely considered. Here we prove new convergence rates for functional principal component estimators. We introduce a double asymptotic framework: one corresponding to the sampling size and a second to the size of the grid. We prove that estimates based on projection onto histograms show optimal rates in a minimax sense. Theoretical results are illustrated on simulated data and the method is applied to the visualization of genomic data.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12719
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:52:y:2025:i:1:p:38-80
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().