EconPapers    
Economics at your fingertips  
 

Analysis of dynamic models by optimization

Erling Moxnes and Sergey Naumov

System Dynamics Review, 2024, vol. 40, issue 1

Abstract: Decision‐makers use system dynamics models to understand how model structure causes problematic behaviors, and how the structure should be changed to improve performance. However, understanding problem behavior and designing policies can be complicated without analytical tools. Existing methods focus on feedback loops that drive dynamic behavior. We propose a new method, Analysis of Dynamic Models by Optimization (ADMO), which focuses on understanding the causes of well‐defined problems and on guiding system and policy design. Unlike existing methods, ADMO can evaluate the influence of exogenous variables and nonlinearities, leading to new understandings of endogenous behavior and providing insights for policy design. ADMO can be employed with any model, including differential equation, agent‐based, discrete event, or hybrid, requiring minimal effort. Two cases demonstrate the application of ADMO to analyze problems and improve both system design and policies. © 2023 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/sdr.1747

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:sysdyn:v:40:y:2024:i:1:n:e1747

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0883-7066

Access Statistics for this article

More articles in System Dynamics Review from System Dynamics Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:sysdyn:v:40:y:2024:i:1:n:e1747