EconPapers    
Economics at your fingertips  
 

Bayesian hierarchical models for misaligned data: a simulation study

Giulia Roli () and Meri Raggi
Additional contact information
Giulia Roli: Alma Mater Studiorum - Università di Bologna, Italy

Statistica, 2015, vol. 75, issue 1, 73-83

Abstract: In this paper, the problem of combining information from different data sources is considered. We focus our attention on spatially misaligned data, where available information (typically counts or rates from administrative sources) refers to spatial units that are different from the ones of interest. A hierarchical Bayesian perspective is considered, as proposed by Mugglin et al. in 2000, to provide a fully model-based approach in an inferential, and not only descriptive, sense. In particular, explanatory covariates are arranged to be modeled according to spatial correlations through a conditionally autoregressive prior structure. In order to assess model performance and its robustness we generate artificial data inspired by a real study and a simulation exercise is then carried out.

Keywords: Bayesian analysis; Misaligned data; Linking spatial information (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bot:rivsta:v:75:y:2015:i:1:p:73-83

Access Statistics for this article

Statistica is currently edited by Department of Statistics, University of Bologna

More articles in Statistica from Department of Statistics, University of Bologna Contact information at EDIRC.
Bibliographic data for series maintained by Giovanna Galatà ().

 
Page updated 2025-03-19
Handle: RePEc:bot:rivsta:v:75:y:2015:i:1:p:73-83