EconPapers    
Economics at your fingertips  
 

Verification of internal risk measure estimates

Davis Mark H. A. ()
Additional contact information
Davis Mark H. A.: Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom of Great Britain and Northern Ireland

Statistics & Risk Modeling, 2016, vol. 33, issue 3-4, 67-93

Abstract: This paper concerns sequential computation of risk measures for financial data and asks how, given a risk measurement procedure, we can tell whether the answers it produces are ‘correct’. We draw the distinction between ‘external’ and ‘internal’ risk measures and concentrate on the latter, where we observe data in real time, make predictions and observe outcomes. It is argued that evaluation of such procedures is best addressed from the point of view of probability forecasting or Dawid’s theory of ‘prequential statistics’ [12]. We introduce a concept of ‘calibration’ of a risk measure in a dynamic setting, following the precepts of Dawid’s weak and strong prequential principles, and examine its application to quantile forecasting (VaR – value at risk) and to mean estimation (applicable to CVaR – expected shortfall). The relationship between these ideas and ‘elicitability’ [24] is examined. We show in particular that VaR has special properties not shared by any other risk measure. Turning to CVaR we argue that its main deficiency is the unquantifiable tail dependence of estimators. In a final section we show that a simple data-driven feedback algorithm can produce VaR estimates on financial data that easily pass both the consistency test and a further newly-introduced statistical test for independence of a binary sequence.

Keywords: Risk measures; probability forecasting; prequential statistics; quantile and mean forecasting; calibration of estimates (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1515/strm-2015-0007 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:strimo:v:33:y:2016:i:3-4:p:67-93:n:3

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/strm/html

DOI: 10.1515/strm-2015-0007

Access Statistics for this article

Statistics & Risk Modeling is currently edited by Robert Stelzer

More articles in Statistics & Risk Modeling from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:strimo:v:33:y:2016:i:3-4:p:67-93:n:3