Predictive analysis for Alzheimer's diagnosis through data mining techniques
Stefano Coscarella (),
Tommaso Ruga (),
Ester Zumpano () and
Eugenio Vocaturo ()
SPAST Reports, 2024, vol. 1, issue 4
Abstract:
Alzheimer's disease represents one of the most significant challenges for contemporary healthcare, as there is still no effective cure for it. Magnetic Resonance Imaging (MRI) techniques have contributed to the diagnosis and prediction of its progression, but they require time and specialized skills for image analysis. Therefore, the use of deep learning techniques is crucial in analyzing large amounts of MRI images with high accuracy for early detection and prediction of the disease progression. In the following work, we focused on feature extraction from multiple sources and their integration to improve the accuracy of Alzheimer's diagnosis. Three distinctive methodologies have been developed. The first one utilizes a Feed Forward Neural Network (FFNN) with features extracted from models like ResNet50 and DenseNet201 with and without the application of Principal Component Analysis (PCA). The second methodology combines features from both models, with and without the application of PCA. Finally, the third methodology combines features from the models with those extracted from manual techniques like Discrete Wavelet Transform (DWT), Local Binary Pattern (LBP), and Gray Level Co-occurrence Matrix (GLCM) by applying PCA before or after feature combination.
Keywords: Alzheimer Detection; Magnetic Resonance Imaging; Deep learning; Features extraction (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://spast.org/article/view/4991/421 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bps:jspath:v:1:y:2024:i:4:id:4991
Access Statistics for this article
SPAST Reports is currently edited by Srinesh Singh Thakur
More articles in SPAST Reports from SPAST Foundation
Bibliographic data for series maintained by Srinesh Singh Thakur ().