EconPapers    
Economics at your fingertips  
 

Development of A Path Flow Estimator for Inferring Steady-State and Time-Dependent Origin-Destination Trip Matrices

Michael Zhang, Yu Nie, Wei Shen, Ming S. Lee, Sarawut Jansuwan, Piya Chootinan, Surachet Pravinvongvuth, Anthony Chen and Will W. Recker

Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley

Abstract: Reliable origin/destination (O-D) data are critical to many applications in transportation planning, design and operations. Because of the high costs of and challenges in obtaining reliable O-D trip matrices from surveys or other direct sampling methods, estimating O-D trip tables from a readily available data source, traffic counts, provides an attractive, economical alternative. This project investigates one such an estimation method and implements it in a user-friendly software tool called Visual PFE TD. The developed O-D estimation tool can be used to obtain both static and dynamic O-D trip tables for traffic simulation studies, project evaluations, and transportation planning in a more streamlined and less time-consuming manner. For example, it has been used to obtain an initial seed matrix for Paramics' O-D estimator to speed up the latter’s O-D estimation process. A logit path flow estimator (LPFE) originally proposed by Michael Bell (1995) is adopted in this research for inferring both steady and time-dependent O-D trip tables. LPFE is chosen because: 1) it incorporates the logit-based route choice model while avoiding several difficulties encountered in the conventional bi-level formulation; 2) it avoids the difficult dynamic traffic assignment problem through decomposes the dynamic O-D estimation problem into a sequence of static problems, yet takes into account of queuing by linking the static problems across time with residual queues which can be carried over from one period to subsequent periods; and finally, 3) it has been validated in a number of scenarios as a potential tool to determine O-D flows and path travel times in various transportation networks. In this research, we extended the original LPFE formulation and improved the efficiency of solution algorithms, implemented both steady-state and time-dependent LPFE in an object-oriented programming (OOP) framework, tested the performance of LPFE using synthetic data and quantify the accuracy and reliability of its O-D trip table estimates. We also developed Visual PFE and Visual PFE-TD, the graphic user interfaces (GUI) for both static and time-dependent LPFE. Our test case studies show that LPFE is able to produce path flows and O-D travel demands that accurately match traffic counts under the logit traffic assignment assumption. We also found that information reflecting the spatial structure of travel demands (e.g., a historical O-D table) is of great value to the improvement of the quality of O-D trip estimates, and that LPFE can still produce satisfying estimates even when traffic counts are only available on a small portion of links, as long as such structural information is maintained in the base O-D table.

Keywords: Engineering (search for similar items in EconPapers)
Date: 2008-06-01
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.escholarship.org/uc/item/3nr033sc.pdf;origin=repeccitec (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cdl:itsrrp:qt3nr033sc

Access Statistics for this paper

More papers in Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley Contact information at EDIRC.
Bibliographic data for series maintained by Lisa Schiff ().

 
Page updated 2025-06-08
Handle: RePEc:cdl:itsrrp:qt3nr033sc