Algorithmic collusion and the minimum price Markov game
Igor Sadoune,
Marcelin Joanis and
Andrea Lodi
CIRANO Working Papers from CIRANO
Abstract:
This paper introduces the Minimum Price Markov Game (MPMG), a theoretical model that reasonably approximates real-world first-price markets following the minimum price rule, such as public auctions. The goal is to provide researchers and practitioners with a framework to study market fairness and regulation in both digitized and non-digitized public procurement processes, amid growing concerns about algorithmic collusion in online markets. Using multi-agent reinforcement learningdriven artificial agents, we demonstrate that (i) the MPMG is a reliable model for first-price market dynamics, (ii) the minimum price rule is generally resilient to non-engineered tacit coordination among rational actors, and (iii) when tacit coordination occurs, it relies heavily on self-reinforcing trends. These findings contribute to the ongoing debate about algorithmic pricing and its implications. Cet article présente le jeu du prix minimum de Markov (MPMG), un modèle théorique qui se rapproche raisonnablement des marchés réels qui suivent la règle du prix minimum, tels que les enchères publiques. L'objectif est de fournir aux chercheurs et aux praticiens un cadre pour étudier l'équité du marché et la réglementation dans les processus de marchés publics numériques et non numériques, dans un contexte de préoccupations croissantes concernant la collusion algorithmique sur les marchés en ligne. En utilisant des agents artificiels basés sur l'apprentissage par renforcement multi-agents, nous démontrons que (i) le MPMG est un modèle fiable pour la dynamique du marché au premier prix, (ii) la règle du prix minimum est généralement résistante à la coordination tacite non technique entre les acteurs rationnels, et (iii) lorsque la coordination tacite se produit, elle s'appuie fortement sur des tendances qui se renforcent d'elles-mêmes. Ces résultats contribuent au débat en cours sur la tarification algorithmique et ses implications.
Keywords: Algorithmic Game Theory; Multiagent Reinforcement Learning; Algorithmic Coordination; Algorithmic Pricing; Théorie algorithmique des jeux; apprentissage par renforcement multi-agents; coordination algorithmique; tarification algorithmique (search for similar items in EconPapers)
Date: 2025-04-08
New Economics Papers: this item is included in nep-ain and nep-com
References: Add references at CitEc
Citations:
Downloads: (external link)
https://cirano.qc.ca/files/publications/2025s-07.pdf
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cir:cirwor:2025s-07
Access Statistics for this paper
More papers in CIRANO Working Papers from CIRANO Contact information at EDIRC.
Bibliographic data for series maintained by Webmaster ().