EconPapers    
Economics at your fingertips  
 

Machine Learning models for bankruptcy prediction in Italy:do industrial variables count?

Daniela Bragoli, Camilla Ferretti, Piero Ganugi, Giovanni Marseguerra (), Davide Mezzogori and Francesco Zammori
Additional contact information
Giovanni Marseguerra: Università Cattolica del Sacro Cuore

No dime19_03, DiMSEFA - Quaderni del Dipartimento di Matematica per le Scienze Economiche, Finanziarie ed Attuariali from Università Cattolica del Sacro Cuore, Dipartimento di Matematica per le Scienze Economiche, Finanziarie ed Attuariali (DiMSEFA)

Abstract: We aim to provide a predictive model, specifically designed for the Italian economy, which classifies solvent and insolvent firms one year in advance, using AIDA Bureau van Dijk dataset from 2007 to 2015. We apply a full battery of bankruptcy forecasting models, including both traditional and more sophisticated machine learning techniques, and add to the financial ratios used in the literature a set of industrial/regional variables. We find that XGBoost is the best performer and that industrial/regional variables are important. Moreover, belonging to a district,having a high markup and a greater market share diminish bankruptcy probability.

Keywords: Firm distress analysis; machine learning; logistic regression; industrial variables. (search for similar items in EconPapers)
JEL-codes: C45 C52 G33 L23 R11 (search for similar items in EconPapers)
Pages: 41
Date: 2019-03
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://dipartimenti.unicatt.it/dime-dime19_03.pdf First version, 2019 (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ctc:sdimse:dime19_03

Access Statistics for this paper

More papers in DiMSEFA - Quaderni del Dipartimento di Matematica per le Scienze Economiche, Finanziarie ed Attuariali from Università Cattolica del Sacro Cuore, Dipartimento di Matematica per le Scienze Economiche, Finanziarie ed Attuariali (DiMSEFA) Contact information at EDIRC.
Bibliographic data for series maintained by Daniela Bragoli ().

 
Page updated 2025-03-19
Handle: RePEc:ctc:sdimse:dime19_03