Semiparametric linear regression with censored data and stochastic regressors
Juan Mora
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
We propose three new estimation procedures in the linear regression model with randomly-right censored data when the distribution function of the error term is unspecified, regressors are stochastic and the distribution function of the censoring variable is not necessarily the same for all observations ("unequal censoring"). The proposed procedures are derived combining techniques which produce accurate estimates with "equal censoring" with kernel-conditionalı Kaplan-Meier estimates. The performance of six estimation procedures (the three proposed methods and three alternative ones) is compared by means of some Monte Carlo experiments.
Keywords: Kernel; estimator; Censoring; Linear; regression; Kaplan-Meier; estimator (search for similar items in EconPapers)
Date: 1994-09
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 034cbcae6d64/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:3954
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().