EconPapers    
Economics at your fingertips  
 

A Quantile Neural Network Framework for Twostage Stochastic Optimization

Calvin Tsay

DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística

Abstract: Two-stage stochastic programming is a popular framework for optimization under uncertainty, where decision variables are split between first-stage decisions, and second-stage (or recourse) decisions, with the latter being adjusted after uncertainty is realized. These problems are often formulated using Sample Average Approximation (SAA), where uncertainty is modeled as a finite set of scenarios, resulting in a large “monolithic” problem, i.e., where the model is repeated for each scenario. The resulting models can be challenging to solve, and several problem-specific decomposition approaches have been proposed. An alternative approach is to approximate the expected second-stage objective value using a surrogate model, which can then be embedded in the first-stage problem to produce good heuristic solutions. In this work, we propose to instead model the distribution of the second-stage objective, specifically using a quantile neural network. Embedding this distributional approximation enables capturing uncertainty and is not limited to expected-value optimization, e.g., the proposed approach enables optimization of the Conditional Value at Risk (CVaR). We discuss optimization formulations for embedding the quantile neural network and demonstrate the effectiveness of the proposed framework using several computational case studies including a set of mixed-integer optimization problems.

Keywords: Optimization; under; uncertainty; Stochastic; programming; Neural; networks; Mixed-Integer; Programming; (MIP) (search for similar items in EconPapers)
Date: 2024-03-19
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 8cbe953f4c7b/content (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:43773

Access Statistics for this paper

More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística
Bibliographic data for series maintained by Ana Poveda ().

 
Page updated 2025-03-19
Handle: RePEc:cte:wsrepe:43773