EconPapers    
Economics at your fingertips  
 

A projection method for multiobjective multiclass SVM

Belén Martín Barragán

DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística

Abstract: Support Vector Machines (SVMs) have become a very popular technique in the machine learning field for classification problems. It was originally proposed for classification of two classes. Various multiclass models with a single objective have been proposed mostly based on two families of methods: an all-together approach and a one-against-all approach. However,most of these single-objective models consider neither the different costs of misclassification nor the user's preferences. To overcome these drawbacks, multiobjective models have been proposed.In this paper we rewrite the different approaches that deal with the multiclass SVM using multiobjective techniques. These multiobjective techniques can give us weakly Pareto-optimal solutions. We propose a multiobjective technique called Projected Multiobjective All-Together(PMAT), which works in a higher-dimension space than the object space. With this technique, we can theoretically characterize the Pareto-optimal solution set. For these multiobjective techniques we get approximate sets of the Pareto-optimal solutions. For these sets, we use hypervolume and epsilon indicators to evaluate different multiobjective techniques. From the experimental results, we can see that (PMAT) outperfoms the other multiobjective techniques. When facing classification problems with very large numbers of classes, we suggest combininga tree method and multiobjective techniques

Keywords: Multiclass; multiobjective; SVM; Weakly; Pareto-optimal; solution; Pareto-optimal; solution (search for similar items in EconPapers)
Date: 2014-05
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... bb18f0b577ea/content (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws141107

Access Statistics for this paper

More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística
Bibliographic data for series maintained by Ana Poveda ().

 
Page updated 2025-03-19
Handle: RePEc:cte:wsrepe:ws141107