EconPapers    
Economics at your fingertips  
 

Assessing driving risk through unsupervised detection of anomalies in telematics time series data

Ian Weng Chan, Andrei L. Badescu and X. Sheldon Lin

ASTIN Bulletin, 2025, vol. 55, issue 2, 205-241

Abstract: Vehicle telematics provides granular data for dynamic driving risk assessment, but current methods often rely on aggregated metrics (e.g., harsh braking counts) and do not fully exploit the rich time-series structure of telematics data. In this paper, we introduce a flexible framework using continuous-time hidden Markov model (CTHMM) to model and analyse trip-level telematics data. Unlike existing methods, the CTHMM models raw time-series data without predefined thresholds on harsh driving events or assumptions about accident probabilities. Moreover, our analysis is based solely on telematics data, requiring no traditional covariates such as driver or vehicle characteristics. Through unsupervised anomaly detection based on pseudo-residuals, we identify deviations from normal driving patterns—defined as the prevalent behaviour observed in a driver’s history or across the population—which are linked to accident risk. Validated on both controlled and real-world datasets, the CTHMM effectively detects abnormal driving behaviour and trips with increased accident likelihood. In real data analysis, higher anomaly levels in longitudinal and lateral accelerations consistently correlate with greater accident risk, with classification models using this information achieving ROC-AUC values as high as 0.86 for trip-level analysis and 0.78 for distinguishing drivers with claims. Furthermore, the methodology reveals significant behavioural differences between drivers with and without claims, offering valuable insights for insurance applications, accident analysis, and prevention.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:55:y:2025:i:2:p:205-241_1

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-05-23
Handle: RePEc:cup:astinb:v:55:y:2025:i:2:p:205-241_1