SEMIPARAMETRIC ESTIMATION OF PARTIALLY LINEAR MODELS FOR DEPENDENT DATA WITH GENERATED REGRESSORS
Qi Li and
Jeffrey Wooldridge
Econometric Theory, 2002, vol. 18, issue 3, 625-645
Abstract:
In this paper we consider the problem of estimating a semiparametric partially linear model for dependent data with generated regressors. This type of model comes naturally from various econometric models such as a semiparametric rational expectation model when the surprise term enters the model nonparametrically, or a semiparametric type-3 Tobit model when the error distributions are of unknown forms, or a semiparametric error correction model. Using the nonparametric kernel method and under primitive conditions, we show that the [square root]n-consistent estimation results of the finite-dimensional parameter in a partially linear model can be generalized to the case of generated regressors with weakly dependent data. The regularity conditions we use are quite weak, and they are similar to those used in Robinson (1988, Econometrica 56, 931–954) for independent and observed data.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (42)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:18:y:2002:i:03:p:625-645_18
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().