PARTIALLY LINEAR MODELS WITH UNIT ROOTS
Ted Juhl and
Zhijie Xiao
Econometric Theory, 2005, vol. 21, issue 5, 877-906
Abstract:
This paper studies the asymptotic properties of a nonstationary partially linear regression model. In particular, we allow for covariates to enter the unit root (or near unit root) model in a nonparametric fashion, so that our model is an extension of the semiparametric model analyzed in Robinson (1988, Econometrica 56, 931–954). It is proved that the autoregressive parameter can be estimated at rate N even though part of the model is estimated nonparametrically. Unit root tests based on the semiparametric estimate of the autoregressive parameter have a limiting distribution that is a mixture of a standard normal and the Dickey–Fuller distribution. A Monte Carlo experiment is conducted to evaluate the performance of the tests for various linear and nonlinear specifications.We thank Bruce Hansen, Roger Koenker, Helmut Lütkepohl, Peter Phillips, three referees, and participants of the 8th World Congress of the Econometric Society and the 10th Midwest Econometrics Group Meeting for helpful comments on an earlier version of this paper. This investigation was supported by the University of Kansas General Research Fund allocation 2301789-003.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Partially Linear Models with Unit Roots (2002) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:21:y:2005:i:05:p:877-906_05
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().