COMPUTATIONALLY EFFICIENT RECURSIONS FOR TOP-ORDER INVARIANT POLYNOMIALS WITH APPLICATIONS
Grant Hillier,
Raymond Kan and
Xiaolu Wang
Econometric Theory, 2009, vol. 25, issue 1, 211-242
Abstract:
The top-order zonal polynomials Ck(A), and top-order invariant polynomials Ck1,…,kr (A1, …, Ar) in which each of the partitions of ki, i = 1, …, r, has only one part, occur frequently in multivariate distribution theory, and econometrics — see, for example, Phillips (1980, Econometrica 48, 861–878; 1984, Journal of Econometrics 26, 387–398; 1985, International Economic Review 26, 21–36; 1986, Econometrica 54, 881–896), Hillier (1985, Econometric Theory 1, 53–72; 2001, Econometric Theory 17, 1–28), Hillier and Satchell (1986, Econometric Theory 2, 66–74), and Smith (1989, Journal of Multivariate Analysis 31, 244–257; 1993, Australian Journal of Statistics 35, 271–282). However, even with the recursive algorithms of Ruben (1962, Annals of Mathematical Statistics 33, 542–570) and Chikuse (1987, Econometric Theory 3, 195–207), numerical evaluation of these invariant polynomials is extremely time consuming. As a result, the value of invariant polynomials has been largely confined to analytic work on distribution theory. In this paper we present new, very much more efficient, algorithms for computing both the top-order zonal and invariant polynomials. These results should make the theoretical results involving these functions much more valuable for direct practical study. We demonstrate the value of our results by providing fast and accurate algorithms for computing the moments of a ratio of quadratic forms in normal random variables.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Computationally efficient recursions for top-order invariant polynomials with applications (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:25:y:2009:i:01:p:211-242_09
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().