DEMAND ANALYSIS AS AN ILL-POSED INVERSE PROBLEM WITH SEMIPARAMETRIC SPECIFICATION
Stefan Hoderlein and
Hajo Holzmann
Econometric Theory, 2011, vol. 27, issue 3, 609-638
Abstract:
In this paper we are concerned with analyzing the behavior of a semiparametric estimator that corrects for endogeneity in a nonparametric regression by assuming mean independence of residuals from instruments only. Because it is common in many applications, we focus on the case where endogenous regressors and additional instruments are jointly normal, conditional on exogenous regressors. This leads to a severely ill-posed inverse problem. In this setup, we show first how to test for conditional normality. More importantly, we then establish how to exploit this knowledge when constructing an estimator, and we derive the large sample behavior of such an estimator. In addition, in a Monte Carlo experiment we analyze its finite sample behavior. Our application comes from consumer demand. We obtain new and interesting findings that highlight both the advantages and the difficulties of an approach that leads to ill-posed inverse problems. Finally, we discuss the somewhat problematic relationship between endogenous nonparametric regression models and the recently emphasized issue of unobserved heterogeneity in structural models.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Demand Analysis as an Ill-Posed Inverse Problem with Semiparametric Specification (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:27:y:2011:i:03:p:609-638_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().