INFERENCE ON NONSTATIONARY TIME SERIES WITH MOVING MEAN
Jiti Gao and
Peter M. Robinson
Econometric Theory, 2016, vol. 32, issue 2, 431-457
Abstract:
A semiparametric model is proposed in which a parametric filtering of a nonstationary time series, incorporating fractionally differencing with short memory correction, removes correlation but leaves a nonparametric deterministic trend. Estimates of the memory parameter and other dependence parameters are proposed, and shown to be consistent and asymptotically normally distributed with parametric rate. Tests with standard asymptotics for I(1) and other hypotheses are thereby justified. Estimation of the trend function is also considered. We include a Monte Carlo study of finite-sample performance.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Inference on Nonstationary Time Series with Moving Mean (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:32:y:2016:i:02:p:431-457_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().