EconPapers    
Economics at your fingertips  
 

ESTIMATION OF A HIGH-DIMENSIONAL COUNTING PROCESS WITHOUT PENALTY FOR HIGH-FREQUENCY EVENTS

Luca Mucciante and Alessio Sancetta

Econometric Theory, 2023, vol. 39, issue 5, 989-1008

Abstract: This paper introduces a counting process for event arrivals in high-frequency trading, based on high-dimensional covariates. The novelty is that, under sparsity conditions on the true model, we do not need to impose any model penalty or parameters shrinkage, unlike Lasso. The procedure allows us to derive a central limit theorem to test restrictions in a two-stage estimator. We achieve this by the use of a sign constraint on the intensity which necessarily needs to be positive. In particular, we introduce an additive model to extract the nonlinear impact of order book variables on buy and sell trade arrivals. In the empirical application, we show that the shape and dynamics of the order book are fundamental in determining the arrival of buy and sell trades in the crude oil futures market. We establish our empirical results mapping the covariates into a higher-dimensional space. Consistently with the theoretical results, the estimated models are sparse in the number of parameters. Using this approach, we are also able to compare competing model hypotheses on the basis of an out-of-sample likelihood ratio type of test.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:39:y:2023:i:5:p:989-1008_4

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:39:y:2023:i:5:p:989-1008_4