EconPapers    
Economics at your fingertips  
 

INTERCEPT ESTIMATION IN NONLINEAR SELECTION MODELS

Wiji Arulampalam, Valentina Corradi and Daniel Gutknecht

Econometric Theory, 2024, vol. 40, issue 6, 1311-1363

Abstract: We propose various semiparametric estimators for nonlinear selection models, where slope and intercept can be separately identified. When the selection equation satisfies a monotonic index restriction, we suggest a local polynomial estimator, using only observations for which the marginal cumulative distribution function of the instrument index is close to one. Data-driven procedures such as cross-validation may be used to select the bandwidth for this estimator. We then consider the case in which the monotonic index restriction does not hold and/or the set of observations with a propensity score close to one is thin so that convergence occurs at a rate that is arbitrarily close to the cubic rate. We explore the finite sample behavior in a Monte Carlo study and illustrate the use of our estimator using a model for count data with multiplicative unobserved heterogeneity.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:40:y:2024:i:6:p:1311-1363_3

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:40:y:2024:i:6:p:1311-1363_3