Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies
Peter Zadrozny
Econometric Theory, 1988, vol. 4, issue 1, 108-124
Abstract:
For purposes of maximum likelihood estimation, we show how to compute the Gaussian likelihood function when the data are generated by a higher-order continuous-time vector ARMAX model and are observed as stocks and flows at different frequencies. Continuous-time ARMAX models are analogous to discrete-time autoregressive moving-average models with distributed-lag exogenous variables. Stocks are variables observed at points in time and flows are variables observed as integrals over sampling intervals. We derive the implied state-space model of the discrete-time data and show how to use it to compute the Gaussian likelihood function with Kalman-filtering, prediction-error, decomposition of the data.
Date: 1988
References: Add references at CitEc
Citations: View citations in EconPapers (62)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:4:y:1988:i:01:p:108-124_01
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().