On the Estimated Variances of Regression Coefficients in Misspecified Error Components Models
Philippe Deschamps
Econometric Theory, 1991, vol. 7, issue 3, 369-384
Abstract:
In a regression model with an arbitrary number of error components, the covariance matrix of the disturbances has three equivalent representations as linear combinations of matrices. Furthermore, this property is invariant with respect to powers, matrix addition, and matrix multiplication. This result is applied to the derivation and interpretation of the inconsistency of the estimated coefficient variances when the error components structure is improperly restricted. This inconsistency is defined as the difference between the asymptotic variance obtained when the restricted model is correctly specified, and the asymptotic variance obtained when the restricted model is incorrectly specified; when some error components are improperly omitted, and the remaining variance components are consistently estimated, it is always negative. In the case where the time component is improperly omitted from the two-way model, we show that the difference between the true and estimated coefficient variances is of order greater than N–1 in probability.
Date: 1991
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:7:y:1991:i:03:p:369-384_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().