A dyadic reciprocity index for repeated interaction networks*
Cheng Wang,
Omar Lizardo,
David Hachen,
Anthony Strathman,
Zoltán Toroczkai and
Nitesh V. Chawla
Network Science, 2013, vol. 1, issue 1, 31-48
Abstract:
A wide variety of networked systems in human societies are composed of repeated communications between actors. A dyadic relationship made up of repeated interactions may be reciprocal (both actors have the same probability of directing a communication attempt to the other) or non-reciprocal (one actor has a higher probability of initiating a communication attempt than the other). In this paper we propose a theoretically motivated index of reciprocity appropriate for networks formed from repeated interactions based on these probabilities. We go on to examine the distribution of reciprocity in a large-scale social network built from trace-logs of over a billion cell-phone communication events across millions of actors in a large industrialized country. We find that while most relationships tend toward reciprocity, a substantial minority of relationships exhibit large levels of non-reciprocity. This is puzzling because behavioral theories in social science predict that persons will selectively terminate non-reciprocal relationships, keeping only those that approach reciprocity. We point to two structural features of human communication behavior and relationship formation—the division of contacts into strong and weak ties and degree-based assortativity—that either help or hinder the ability of persons to obtain communicative balance in their relationships. We examine the extent to which deviations from reciprocity in the observed network are partially traceable to the operation of these countervailing tendencies.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:1:y:2013:i:01:p:31-48_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().