Multiple factor analysis for time-varying two-mode networks
Giancarlo Ragozini,
Domenico de Stefano and
Maria Rosaria D'Esposito
Network Science, 2015, vol. 3, issue 1, 18-36
Abstract:
Most social networks present complex structures. They can be both multi-modal and multi-relational. In addition, each relationship can be observed across time occasions. Relational data observed in such conditions can be organized into multidimensional arrays and statistical methods from the theory of multiway data analysis may be exploited to reveal the underlying data structure. In this paper, we adopt an exploratory data analysis point of view, and we present a procedure based on multiple factor analysis and multiple correspondence analysis to deal with time-varying two-mode networks. This procedure allows us to create static displays in order to explore network evolutions and to visually analyze the degree of similarity of actor/event network profiles over time while preserving the different statuses of the two modes.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:3:y:2015:i:01:p:18-36_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().