Gradient and Harnack-type estimates for PageRank
Paul Horn and
Lauren M. Nelsen
Network Science, 2021, vol. 9, issue S1, S4-S22
Abstract:
Personalized PageRank has found many uses in not only the ranking of webpages, but also algorithmic design, due to its ability to capture certain geometric properties of networks. In this paper, we study the diffusion of PageRank: how varying the jumping (or teleportation) constant affects PageRank values. To this end, we prove a gradient estimate for PageRank, akin to the Li–Yau inequality for positive solutions to the heat equation (for manifolds, with later versions adapted to graphs).
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:9:y:2021:i:s1:p:s4-s22_2
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().